MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. 6061 Aluminum

Both 383.0 aluminum and 6061 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 3.5
3.4 to 20
Fatigue Strength, MPa 150
58 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 280
130 to 410
Tensile Strength: Yield (Proof), MPa 150
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 540
580
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 96
170
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
43
Electrical Conductivity: Equal Weight (Specific), % IACS 74
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Calomel Potential, mV -690
-740
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.5
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 150
42 to 1000
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 28
13 to 42
Strength to Weight: Bending, points 34
21 to 45
Thermal Diffusivity, mm2/s 39
68
Thermal Shock Resistance, points 13
5.7 to 18

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
95.9 to 98.6
Chromium (Cr), % 0
0.040 to 0.35
Copper (Cu), % 2.0 to 3.0
0.15 to 0.4
Iron (Fe), % 0 to 1.3
0 to 0.7
Magnesium (Mg), % 0 to 0.1
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 9.5 to 11.5
0.4 to 0.8
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 3.0
0 to 0.25
Residuals, % 0
0 to 0.15