MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. 7178 Aluminum

Both 383.0 aluminum and 7178 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 3.5
4.5 to 12
Fatigue Strength, MPa 150
120 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 280
240 to 640
Tensile Strength: Yield (Proof), MPa 150
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 540
370
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 580
630
Melting Onset (Solidus), °C 540
480
Specific Heat Capacity, J/kg-K 880
860
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
31
Electrical Conductivity: Equal Weight (Specific), % IACS 74
91

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
3.1
Embodied Carbon, kg CO2/kg material 7.5
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 150
110 to 2220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
45
Strength to Weight: Axial, points 28
21 to 58
Strength to Weight: Bending, points 34
28 to 54
Thermal Diffusivity, mm2/s 39
47
Thermal Shock Resistance, points 13
10 to 28

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
85.4 to 89.5
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 2.0 to 3.0
1.6 to 2.4
Iron (Fe), % 0 to 1.3
0 to 0.5
Magnesium (Mg), % 0 to 0.1
2.4 to 3.1
Manganese (Mn), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 9.5 to 11.5
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 3.0
6.3 to 7.3
Residuals, % 0
0 to 0.15