MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. ACI-ASTM CK20 Steel

383.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK20 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is ACI-ASTM CK20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
150
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
37
Fatigue Strength, MPa 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 280
530
Tensile Strength: Yield (Proof), MPa 150
260

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1400
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
14
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 74
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
4.4
Embodied Energy, MJ/kg 140
62
Embodied Water, L/kg 1030
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
160
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 34
19
Thermal Diffusivity, mm2/s 39
3.7
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
46.7 to 58
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.5 to 11.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0