MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. AISI 310 Stainless Steel

383.0 aluminum belongs to the aluminum alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
180 to 220
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
34 to 45
Fatigue Strength, MPa 150
240 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 280
600 to 710
Tensile Strength: Yield (Proof), MPa 150
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 170
1040
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 74
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
4.3
Embodied Energy, MJ/kg 140
61
Embodied Water, L/kg 1030
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170 to 310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28
21 to 25
Strength to Weight: Bending, points 34
20 to 22
Thermal Diffusivity, mm2/s 39
3.9
Thermal Shock Resistance, points 13
14 to 17

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
48.2 to 57
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.3
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 9.5 to 11.5
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0