MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.0580 Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.0580 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.0580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
5.6 to 25
Fatigue Strength, MPa 150
210 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 280
540 to 620
Tensile Strength: Yield (Proof), MPa 150
290 to 450

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 74
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1030
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
31 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
230 to 540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
19 to 22
Strength to Weight: Bending, points 34
19 to 21
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 13
17 to 20

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0 to 0.22
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
97.5 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.6
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 9.5 to 11.5
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0