MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.4406 Stainless Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.4406 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.4406 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
220
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
42
Fatigue Strength, MPa 150
280
Impact Strength: V-Notched Charpy, J 4.0
90
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 280
680
Tensile Strength: Yield (Proof), MPa 150
320

Thermal Properties

Latent Heat of Fusion, J/g 540
290
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 74
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.5
3.7
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 1030
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
240
Resilience: Unit (Modulus of Resilience), kJ/m3 150
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 34
22
Thermal Diffusivity, mm2/s 39
4.0
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
63.2 to 71.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0 to 0.3
10 to 12.5
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 9.5 to 11.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0