MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.4539 Stainless Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.4539 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.4539 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
38
Fatigue Strength, MPa 150
220
Impact Strength: V-Notched Charpy, J 4.0
90
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
79
Tensile Strength: Ultimate (UTS), MPa 280
630
Tensile Strength: Yield (Proof), MPa 150
260

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 96
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 74
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.5
5.7
Embodied Energy, MJ/kg 140
78
Embodied Water, L/kg 1030
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 34
20
Thermal Diffusivity, mm2/s 39
3.2
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 2.0 to 3.0
1.2 to 2.0
Iron (Fe), % 0 to 1.3
43.1 to 51.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.3
24 to 26
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.5 to 11.5
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0