MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.4971 Stainless Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
240
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 3.5
34
Fatigue Strength, MPa 150
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 280
800
Tensile Strength: Yield (Proof), MPa 150
340

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 96
13
Thermal Expansion, µm/m-K 21
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.5
7.6
Embodied Energy, MJ/kg 140
110
Embodied Water, L/kg 1030
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
220
Resilience: Unit (Modulus of Resilience), kJ/m3 150
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
26
Strength to Weight: Bending, points 34
23
Thermal Diffusivity, mm2/s 39
3.4
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
24.3 to 37.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.3
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 9.5 to 11.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0