MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.6982 Stainless Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.6982 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.6982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
17
Fatigue Strength, MPa 150
350
Impact Strength: V-Notched Charpy, J 4.0
56
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 280
800
Tensile Strength: Yield (Proof), MPa 150
570

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Maximum Temperature: Mechanical, °C 170
770
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 74
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
2.4
Embodied Energy, MJ/kg 140
33
Embodied Water, L/kg 1030
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
820
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28
28
Strength to Weight: Bending, points 34
25
Thermal Diffusivity, mm2/s 39
6.6
Thermal Shock Resistance, points 13
29

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
78.7 to 84.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.3
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 9.5 to 11.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0