MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.7703 Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
20
Fatigue Strength, MPa 150
320 to 340
Impact Strength: V-Notched Charpy, J 4.0
46
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Tensile Strength: Ultimate (UTS), MPa 280
670 to 690
Tensile Strength: Yield (Proof), MPa 150
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 580
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 74
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.2
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.5
2.5
Embodied Energy, MJ/kg 140
35
Embodied Water, L/kg 1030
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 150
570 to 650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 34
22
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 13
19 to 20

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 2.0 to 3.0
0 to 0.2
Iron (Fe), % 0 to 1.3
94.6 to 96.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.5 to 11.5
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0