MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. C66100 Bronze

383.0 aluminum belongs to the aluminum alloys classification, while C66100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 3.5
8.0 to 40
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
43
Tensile Strength: Ultimate (UTS), MPa 280
410 to 790
Tensile Strength: Yield (Proof), MPa 150
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 540
260
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 580
1050
Melting Onset (Solidus), °C 540
1000
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 96
34
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 7.5
2.6
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1030
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
60 to 790
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 28
13 to 25
Strength to Weight: Bending, points 34
14 to 22
Thermal Diffusivity, mm2/s 39
9.7
Thermal Shock Resistance, points 13
15 to 29

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
0
Copper (Cu), % 2.0 to 3.0
92 to 97
Iron (Fe), % 0 to 1.3
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 9.5 to 11.5
2.8 to 3.5
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0 to 1.5
Residuals, % 0
0 to 0.5