MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. N06025 Nickel

383.0 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
32
Fatigue Strength, MPa 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 280
760
Tensile Strength: Yield (Proof), MPa 150
310

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 580
1350
Melting Onset (Solidus), °C 540
1300
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 74
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
50
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.5
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1030
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
26
Strength to Weight: Bending, points 34
22
Thermal Diffusivity, mm2/s 39
2.9
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 79.7 to 88.5
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 2.0 to 3.0
0 to 0.1
Iron (Fe), % 0 to 1.3
8.0 to 11
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.3
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.5 to 11.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 3.0
0.010 to 0.1
Residuals, % 0 to 0.5
0