MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. 7049A Aluminum

Both 384.0 aluminum and 7049A aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
71
Elongation at Break, % 2.5
5.0 to 5.7
Fatigue Strength, MPa 140
180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
27
Shear Strength, MPa 200
340 to 350
Tensile Strength: Ultimate (UTS), MPa 330
580 to 590
Tensile Strength: Yield (Proof), MPa 170
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 550
370
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 530
430
Specific Heat Capacity, J/kg-K 870
850
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
40
Electrical Conductivity: Equal Weight (Specific), % IACS 69
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.9
3.1
Embodied Carbon, kg CO2/kg material 7.4
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1010
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1800 to 1990
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
44
Strength to Weight: Axial, points 32
52 to 53
Strength to Weight: Bending, points 37
50 to 51
Thermal Diffusivity, mm2/s 39
50
Thermal Shock Resistance, points 15
25

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 3.0 to 4.5
1.2 to 1.9
Iron (Fe), % 0 to 1.3
0 to 0.5
Magnesium (Mg), % 0 to 0.1
2.1 to 3.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 10.5 to 12
0 to 0.4
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 3.0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15