MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. ACI-ASTM CC50 Steel

384.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CC50 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is ACI-ASTM CC50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210
Elastic (Young's, Tensile) Modulus, GPa 74
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 330
430

Thermal Properties

Latent Heat of Fusion, J/g 550
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 96
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 69
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 7.4
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1010
170

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 37
17
Thermal Diffusivity, mm2/s 39
4.5
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
62.9 to 74
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0