MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. AISI 301LN Stainless Steel

384.0 aluminum belongs to the aluminum alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
23 to 51
Fatigue Strength, MPa 140
270 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 200
450 to 670
Tensile Strength: Ultimate (UTS), MPa 330
630 to 1060
Tensile Strength: Yield (Proof), MPa 170
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 550
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 69
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1010
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 190
180 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 32
22 to 38
Strength to Weight: Bending, points 37
21 to 30
Thermal Diffusivity, mm2/s 39
4.0
Thermal Shock Resistance, points 15
14 to 24

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
70.7 to 77.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0