MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. AISI 334 Stainless Steel

384.0 aluminum belongs to the aluminum alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
180
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
34
Fatigue Strength, MPa 140
150
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 200
360
Tensile Strength: Ultimate (UTS), MPa 330
540
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 550
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 580
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.4
4.1
Embodied Energy, MJ/kg 140
59
Embodied Water, L/kg 1010
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
140
Resilience: Unit (Modulus of Resilience), kJ/m3 190
96
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 37
19
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
55.7 to 62.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0