MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. AISI 348H Stainless Steel

384.0 aluminum belongs to the aluminum alloys classification, while AISI 348H stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
180
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
40
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 330
580
Tensile Strength: Yield (Proof), MPa 170
230

Thermal Properties

Latent Heat of Fusion, J/g 550
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 69
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
3.9
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 1010
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
190
Resilience: Unit (Modulus of Resilience), kJ/m3 190
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 37
20
Thermal Diffusivity, mm2/s 39
4.1
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
63.8 to 73.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 12
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0