MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. ASTM A229 Spring Steel

384.0 aluminum belongs to the aluminum alloys classification, while ASTM A229 spring steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
490 to 550
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
14
Fatigue Strength, MPa 140
710 to 790
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Shear Strength, MPa 200
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 330
1690 to 1890
Tensile Strength: Yield (Proof), MPa 170
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 69
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1010
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 190
3260 to 4080
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 32
60 to 67
Strength to Weight: Bending, points 37
40 to 43
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
54 to 60

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0.55 to 0.85
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
97.5 to 99
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 1.2
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0