MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. ASTM A372 Grade M Steel

384.0 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
240 to 280
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
18 to 21
Fatigue Strength, MPa 140
450 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 200
510 to 570
Tensile Strength: Ultimate (UTS), MPa 330
810 to 910
Tensile Strength: Yield (Proof), MPa 170
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
46
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 69
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
5.0
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.4
2.0
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1010
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1140 to 1580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 32
29 to 32
Strength to Weight: Bending, points 37
24 to 27
Thermal Diffusivity, mm2/s 39
12
Thermal Shock Resistance, points 15
24 to 27

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
92.5 to 95.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.5
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 10.5 to 12
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0