MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. ASTM A572 Steel

384.0 aluminum belongs to the aluminum alloys classification, while ASTM A572 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is ASTM A572 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
140 to 190
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
18 to 25
Fatigue Strength, MPa 140
240 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 200
300 to 380
Tensile Strength: Ultimate (UTS), MPa 330
470 to 620
Tensile Strength: Yield (Proof), MPa 170
330 to 510

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 69
8.2 to 8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
1.6
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1010
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
290 to 690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 32
17 to 22
Strength to Weight: Bending, points 37
17 to 21
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
14 to 18