MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. ASTM Grade LCC Steel

384.0 aluminum belongs to the aluminum alloys classification, while ASTM grade LCC steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is ASTM grade LCC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
25
Fatigue Strength, MPa 140
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 330
570
Tensile Strength: Yield (Proof), MPa 170
310

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
49
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 69
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1010
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 37
20
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
96.9 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.2
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0
0 to 1.0