MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. EN 1.4008 Stainless Steel

384.0 aluminum belongs to the aluminum alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
17
Fatigue Strength, MPa 140
300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 330
670
Tensile Strength: Yield (Proof), MPa 170
500

Thermal Properties

Latent Heat of Fusion, J/g 550
280
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
25
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 69
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
2.1
Embodied Energy, MJ/kg 140
30
Embodied Water, L/kg 1010
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 37
22
Thermal Diffusivity, mm2/s 39
6.7
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
81.8 to 86.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0 to 0.5
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0