MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. EN 1.5410 Steel

384.0 aluminum belongs to the aluminum alloys classification, while EN 1.5410 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is EN 1.5410 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170 to 190
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
20 to 25
Fatigue Strength, MPa 140
290 to 330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 330
560 to 620
Tensile Strength: Yield (Proof), MPa 170
400 to 480

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 69
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
1.7
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1010
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
430 to 610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 32
20 to 22
Strength to Weight: Bending, points 37
19 to 21
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
16 to 18

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
96.9 to 98.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.2 to 1.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 12
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0