MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. EN 2.4856 Nickel

384.0 aluminum belongs to the aluminum alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
28
Fatigue Strength, MPa 140
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
79
Shear Strength, MPa 200
570
Tensile Strength: Ultimate (UTS), MPa 330
880
Tensile Strength: Yield (Proof), MPa 170
430

Thermal Properties

Latent Heat of Fusion, J/g 550
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 580
1480
Melting Onset (Solidus), °C 530
1430
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 96
10
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 69
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
80
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 7.4
14
Embodied Energy, MJ/kg 140
190
Embodied Water, L/kg 1010
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
200
Resilience: Unit (Modulus of Resilience), kJ/m3 190
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 32
28
Strength to Weight: Bending, points 37
24
Thermal Diffusivity, mm2/s 39
2.7
Thermal Shock Resistance, points 15
29

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.0 to 4.5
0 to 0.5
Iron (Fe), % 0 to 1.3
0 to 5.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.5
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10.5 to 12
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0