MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. EN AC-46600 Aluminum

Both 384.0 aluminum and EN AC-46600 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
77
Elastic (Young's, Tensile) Modulus, GPa 74
72
Elongation at Break, % 2.5
1.1
Fatigue Strength, MPa 140
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 330
180
Tensile Strength: Yield (Proof), MPa 170
110

Thermal Properties

Latent Heat of Fusion, J/g 550
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
620
Melting Onset (Solidus), °C 530
560
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
29
Electrical Conductivity: Equal Weight (Specific), % IACS 69
94

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 7.4
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1010
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 190
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 37
25
Thermal Diffusivity, mm2/s 39
51
Thermal Shock Resistance, points 15
8.1

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
85.6 to 92.4
Copper (Cu), % 3.0 to 4.5
1.5 to 2.5
Iron (Fe), % 0 to 1.3
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0 to 0.1
0 to 0.35
Manganese (Mn), % 0 to 0.5
0.15 to 0.65
Nickel (Ni), % 0 to 0.5
0 to 0.35
Silicon (Si), % 10.5 to 12
6.0 to 8.0
Tin (Sn), % 0 to 0.35
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 3.0
0 to 1.0
Residuals, % 0
0 to 0.15