MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. C84000 Brass

384.0 aluminum belongs to the aluminum alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
65
Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 2.5
27
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
42
Tensile Strength: Ultimate (UTS), MPa 330
250
Tensile Strength: Yield (Proof), MPa 170
140

Thermal Properties

Latent Heat of Fusion, J/g 550
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
1040
Melting Onset (Solidus), °C 530
940
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 96
72
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
16
Electrical Conductivity: Equal Weight (Specific), % IACS 69
17

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 7.4
3.0
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1010
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
58
Resilience: Unit (Modulus of Resilience), kJ/m3 190
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 32
8.2
Strength to Weight: Bending, points 37
10
Thermal Diffusivity, mm2/s 39
22
Thermal Shock Resistance, points 15
9.0

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 3.0 to 4.5
82 to 89
Iron (Fe), % 0 to 1.3
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.010
Nickel (Ni), % 0 to 0.5
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 10.5 to 12
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.35
2.0 to 4.0
Zinc (Zn), % 0 to 3.0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7