MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. S20910 Stainless Steel

384.0 aluminum belongs to the aluminum alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
14 to 39
Fatigue Strength, MPa 140
310 to 460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
79
Shear Strength, MPa 200
500 to 570
Tensile Strength: Ultimate (UTS), MPa 330
780 to 940
Tensile Strength: Yield (Proof), MPa 170
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 550
300
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
13
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
4.8
Embodied Energy, MJ/kg 140
68
Embodied Water, L/kg 1010
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 190
460 to 1640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 32
28 to 33
Strength to Weight: Bending, points 37
24 to 27
Thermal Diffusivity, mm2/s 39
3.6
Thermal Shock Resistance, points 15
17 to 21

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
52.1 to 62.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.5
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0