MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. S43037 Stainless Steel

384.0 aluminum belongs to the aluminum alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
160
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
25
Fatigue Strength, MPa 140
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 200
260
Tensile Strength: Ultimate (UTS), MPa 330
410
Tensile Strength: Yield (Proof), MPa 170
230

Thermal Properties

Latent Heat of Fusion, J/g 550
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 69
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.4
2.3
Embodied Energy, MJ/kg 140
32
Embodied Water, L/kg 1010
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
88
Resilience: Unit (Modulus of Resilience), kJ/m3 190
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 32
15
Strength to Weight: Bending, points 37
16
Thermal Diffusivity, mm2/s 39
6.7
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
77.9 to 83.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0.1 to 1.0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0