MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. 5042 Aluminum

Both 390.0 aluminum and 5042 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
68
Elongation at Break, % 1.0
1.1 to 3.4
Fatigue Strength, MPa 76 to 110
97 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 280 to 300
340 to 360
Tensile Strength: Yield (Proof), MPa 240 to 270
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 640
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
33
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.3
8.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 950
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
550 to 720
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 28 to 30
35 to 37
Strength to Weight: Bending, points 35 to 36
40 to 42
Thermal Diffusivity, mm2/s 56
53
Thermal Shock Resistance, points 14 to 15
15 to 16

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
94.2 to 96.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
0 to 0.15
Iron (Fe), % 0 to 1.3
0 to 0.35
Magnesium (Mg), % 0.45 to 0.65
3.0 to 4.0
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Silicon (Si), % 16 to 18
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15