MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. 5456 Aluminum

Both 390.0 aluminum and 5456 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
68
Elongation at Break, % 1.0
11 to 18
Fatigue Strength, MPa 76 to 110
130 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 280 to 300
320 to 340
Tensile Strength: Yield (Proof), MPa 240 to 270
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 640
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
29
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
97

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.3
9.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 950
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
170 to 470
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 28 to 30
33 to 35
Strength to Weight: Bending, points 35 to 36
38 to 40
Thermal Diffusivity, mm2/s 56
48
Thermal Shock Resistance, points 14 to 15
14 to 15

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
92 to 94.8
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0.45 to 0.65
4.7 to 5.5
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Silicon (Si), % 16 to 18
0 to 0.25
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15