MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. EN 1.3538 Steel

390.0 aluminum belongs to the aluminum alloys classification, while EN 1.3538 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is EN 1.3538 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 75
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 280 to 300
670 to 740

Thermal Properties

Latent Heat of Fusion, J/g 640
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.3
1.6
Embodied Energy, MJ/kg 130
21
Embodied Water, L/kg 950
56

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 28 to 30
24 to 26
Strength to Weight: Bending, points 35 to 36
22 to 23
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 14 to 15
20 to 22

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0
1.7 to 2.0
Copper (Cu), % 4.0 to 5.0
0 to 0.3
Iron (Fe), % 0 to 1.3
96 to 97.2
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.8
Molybdenum (Mo), % 0
0.4 to 0.5
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 16 to 18
0.15 to 0.35
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0