MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. EN 2.4663 Nickel

390.0 aluminum belongs to the aluminum alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
210
Elongation at Break, % 1.0
40
Fatigue Strength, MPa 76 to 110
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 280 to 300
780
Tensile Strength: Yield (Proof), MPa 240 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 640
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 7.3
11
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 950
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
250
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 28 to 30
25
Strength to Weight: Bending, points 35 to 36
22
Thermal Diffusivity, mm2/s 56
3.5
Thermal Shock Resistance, points 14 to 15
22

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.3
0 to 2.0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 16 to 18
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.2 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0