MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. Grade Ti-Pd18 Titanium

390.0 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
320
Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 1.0
17
Fatigue Strength, MPa 76 to 110
350
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 280 to 300
710
Tensile Strength: Yield (Proof), MPa 240 to 270
540

Thermal Properties

Latent Heat of Fusion, J/g 640
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 650
1640
Melting Onset (Solidus), °C 560
1590
Specific Heat Capacity, J/kg-K 880
550
Thermal Conductivity, W/m-K 130
8.2
Thermal Expansion, µm/m-K 18
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 7.3
41
Embodied Energy, MJ/kg 130
670
Embodied Water, L/kg 950
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
1380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
35
Strength to Weight: Axial, points 28 to 30
44
Strength to Weight: Bending, points 35 to 36
39
Thermal Diffusivity, mm2/s 56
3.3
Thermal Shock Resistance, points 14 to 15
52

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.25
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 16 to 18
0
Titanium (Ti), % 0 to 0.2
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4