MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. Nickel 689

390.0 aluminum belongs to the aluminum alloys classification, while nickel 689 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is nickel 689.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
350
Elastic (Young's, Tensile) Modulus, GPa 75
210
Elongation at Break, % 1.0
23
Fatigue Strength, MPa 76 to 110
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 280 to 300
1250
Tensile Strength: Yield (Proof), MPa 240 to 270
690

Thermal Properties

Latent Heat of Fusion, J/g 640
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 7.3
11
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 950
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
240
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
1170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 28 to 30
41
Strength to Weight: Bending, points 35 to 36
30
Thermal Shock Resistance, points 14 to 15
35

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0.75 to 1.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
9.0 to 11
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
0 to 5.0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
48.3 to 60.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 16 to 18
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
2.3 to 2.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0