MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. N06975 Nickel

390.0 aluminum belongs to the aluminum alloys classification, while N06975 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 1.0
45
Fatigue Strength, MPa 76 to 110
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 280 to 300
660
Tensile Strength: Yield (Proof), MPa 240 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 640
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 7.3
8.9
Embodied Energy, MJ/kg 130
120
Embodied Water, L/kg 950
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
240
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 28 to 30
22
Strength to Weight: Bending, points 35 to 36
20
Thermal Shock Resistance, points 14 to 15
18

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 4.0 to 5.0
0.7 to 1.2
Iron (Fe), % 0 to 1.3
10.2 to 23.6
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0.7 to 1.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0