MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. S13800 Stainless Steel

390.0 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 1.0
11 to 18
Fatigue Strength, MPa 76 to 110
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 280 to 300
980 to 1730
Tensile Strength: Yield (Proof), MPa 240 to 270
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 640
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.3
3.4
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 950
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
1090 to 5490
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 28 to 30
35 to 61
Strength to Weight: Bending, points 35 to 36
28 to 41
Thermal Diffusivity, mm2/s 56
4.3
Thermal Shock Resistance, points 14 to 15
33 to 58

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
73.6 to 77.3
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 16 to 18
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0