MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. S21904 Stainless Steel

390.0 aluminum belongs to the aluminum alloys classification, while S21904 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 1.0
17 to 51
Fatigue Strength, MPa 76 to 110
380 to 550
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 280 to 300
700 to 1000
Tensile Strength: Yield (Proof), MPa 240 to 270
390 to 910

Thermal Properties

Latent Heat of Fusion, J/g 640
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.3
3.0
Embodied Energy, MJ/kg 130
43
Embodied Water, L/kg 950
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
160 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
380 to 2070
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 28 to 30
25 to 36
Strength to Weight: Bending, points 35 to 36
23 to 29
Thermal Diffusivity, mm2/s 56
3.8
Thermal Shock Resistance, points 14 to 15
15 to 21

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 21.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
59.5 to 67.4
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
8.0 to 10
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0