MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. S30601 Stainless Steel

390.0 aluminum belongs to the aluminum alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
190
Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 1.0
37
Fatigue Strength, MPa 76 to 110
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Tensile Strength: Ultimate (UTS), MPa 280 to 300
660
Tensile Strength: Yield (Proof), MPa 240 to 270
300

Thermal Properties

Latent Heat of Fusion, J/g 640
370
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 880
500
Thermal Expansion, µm/m-K 18
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.3
3.9
Embodied Energy, MJ/kg 130
55
Embodied Water, L/kg 950
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
200
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 28 to 30
24
Strength to Weight: Bending, points 35 to 36
22
Thermal Shock Resistance, points 14 to 15
16

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 4.0 to 5.0
0 to 0.35
Iron (Fe), % 0 to 1.3
56.9 to 60.5
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0