MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. S44635 Stainless Steel

390.0 aluminum belongs to the aluminum alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
240
Elastic (Young's, Tensile) Modulus, GPa 75
210
Elongation at Break, % 1.0
23
Fatigue Strength, MPa 76 to 110
390
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 280 to 300
710
Tensile Strength: Yield (Proof), MPa 240 to 270
580

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.3
4.4
Embodied Energy, MJ/kg 130
62
Embodied Water, L/kg 950
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
150
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
810
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 28 to 30
25
Strength to Weight: Bending, points 35 to 36
23
Thermal Diffusivity, mm2/s 56
4.4
Thermal Shock Resistance, points 14 to 15
23

Alloy Composition

Aluminum (Al), % 74.5 to 79.6
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
61.5 to 68.5
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0.2 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0