MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. 5083 Aluminum

Both 392.0 aluminum and 5083 aluminum are aluminum alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
68
Elongation at Break, % 0.86
1.1 to 17
Fatigue Strength, MPa 190
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 290
290 to 390
Tensile Strength: Yield (Proof), MPa 270
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 670
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 580
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
29
Electrical Conductivity: Equal Weight (Specific), % IACS 90
96

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.5
2.7
Embodied Carbon, kg CO2/kg material 7.5
8.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 950
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 490
95 to 860
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
50
Strength to Weight: Axial, points 32
29 to 40
Strength to Weight: Bending, points 39
36 to 44
Thermal Diffusivity, mm2/s 60
48
Thermal Shock Resistance, points 15
12 to 17

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0.4 to 0.8
0 to 0.1
Iron (Fe), % 0 to 1.5
0 to 0.4
Magnesium (Mg), % 0.8 to 1.2
4.0 to 4.9
Manganese (Mn), % 0.2 to 0.6
0.4 to 1.0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 18 to 20
0 to 0.4
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0
0 to 0.15