MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. ACI-ASTM CK20 Steel

392.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is ACI-ASTM CK20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.86
37
Fatigue Strength, MPa 190
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 290
530
Tensile Strength: Yield (Proof), MPa 270
260

Thermal Properties

Latent Heat of Fusion, J/g 670
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1400
Melting Onset (Solidus), °C 580
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.5
4.4
Embodied Energy, MJ/kg 140
62
Embodied Water, L/kg 950
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
160
Resilience: Unit (Modulus of Resilience), kJ/m3 490
170
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
25
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 39
19
Thermal Diffusivity, mm2/s 60
3.7
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 0 to 1.5
46.7 to 58
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 18 to 20
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0