MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. AISI 334 Stainless Steel

392.0 aluminum belongs to the aluminum alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.86
34
Fatigue Strength, MPa 190
150
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 290
540
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 670
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 670
1410
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.5
4.1
Embodied Energy, MJ/kg 140
59
Embodied Water, L/kg 950
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
140
Resilience: Unit (Modulus of Resilience), kJ/m3 490
96
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
25
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 39
19
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 0 to 1.5
55.7 to 62.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.5
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 18 to 20
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0