MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. EN 2.4633 Nickel

392.0 aluminum belongs to the aluminum alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.86
34
Fatigue Strength, MPa 190
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 290
760
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 670
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 670
1350
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
50
Density, g/cm3 2.5
8.2
Embodied Carbon, kg CO2/kg material 7.5
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 950
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
210
Resilience: Unit (Modulus of Resilience), kJ/m3 490
240
Stiffness to Weight: Axial, points 17
13
Stiffness to Weight: Bending, points 56
24
Strength to Weight: Axial, points 32
26
Strength to Weight: Bending, points 39
23
Thermal Diffusivity, mm2/s 60
2.9
Thermal Shock Resistance, points 15
22

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.4 to 0.8
0 to 0.1
Iron (Fe), % 0 to 1.5
8.0 to 11
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0 to 0.5
Nickel (Ni), % 0 to 0.5
58.8 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 18 to 20
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.010 to 0.1
Residuals, % 0 to 0.5
0