MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. EN 2.4889 Nickel

392.0 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.86
39
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 290
720
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 670
350
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 670
1350
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 19
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
42
Density, g/cm3 2.5
8.0
Embodied Carbon, kg CO2/kg material 7.5
6.9
Embodied Energy, MJ/kg 140
98
Embodied Water, L/kg 950
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
220
Resilience: Unit (Modulus of Resilience), kJ/m3 490
180
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
24
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 39
22
Thermal Diffusivity, mm2/s 60
3.4
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0.4 to 0.8
0 to 0.3
Iron (Fe), % 0 to 1.5
21 to 25
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.5
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 18 to 20
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0