MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. Type 2 Niobium

392.0 aluminum belongs to the aluminum alloys classification, while Type 2 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is Type 2 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.86
29
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 28
38
Tensile Strength: Ultimate (UTS), MPa 290
140
Tensile Strength: Yield (Proof), MPa 270
82

Thermal Properties

Latent Heat of Fusion, J/g 670
320
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 19
7.3

Otherwise Unclassified Properties

Density, g/cm3 2.5
8.6
Embodied Water, L/kg 950
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
35
Resilience: Unit (Modulus of Resilience), kJ/m3 490
32
Stiffness to Weight: Axial, points 17
6.8
Stiffness to Weight: Bending, points 56
18
Strength to Weight: Axial, points 32
4.6
Strength to Weight: Bending, points 39
7.1
Thermal Diffusivity, mm2/s 60
23
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 0.4 to 0.8
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 1.5
0 to 0.010
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0 to 0.5
0 to 0.0050
Niobium (Nb), % 0
99.5 to 100
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 18 to 20
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.3
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0 to 0.030
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.5
0