MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. C65400 Bronze

392.0 aluminum belongs to the aluminum alloys classification, while C65400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.86
2.6 to 47
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
43
Tensile Strength: Ultimate (UTS), MPa 290
500 to 1060
Tensile Strength: Yield (Proof), MPa 270
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 670
260
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 670
1020
Melting Onset (Solidus), °C 580
960
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
36
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 90
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.5
8.7
Embodied Carbon, kg CO2/kg material 7.5
2.8
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 950
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 490
130 to 3640
Stiffness to Weight: Axial, points 17
7.3
Stiffness to Weight: Bending, points 56
19
Strength to Weight: Axial, points 32
16 to 34
Strength to Weight: Bending, points 39
16 to 27
Thermal Diffusivity, mm2/s 60
10
Thermal Shock Resistance, points 15
18 to 39

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Chromium (Cr), % 0
0.010 to 0.12
Copper (Cu), % 0.4 to 0.8
93.8 to 96.1
Iron (Fe), % 0 to 1.5
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 18 to 20
2.7 to 3.4
Tin (Sn), % 0 to 0.3
1.2 to 1.9
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0 to 0.5
Residuals, % 0
0 to 0.2