MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. C76200 Nickel Silver

392.0 aluminum belongs to the aluminum alloys classification, while C76200 nickel silver belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is C76200 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
120
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 28
44
Tensile Strength: Ultimate (UTS), MPa 290
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 670
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 670
1030
Melting Onset (Solidus), °C 580
980
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 19
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 90
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 2.5
8.2
Embodied Carbon, kg CO2/kg material 7.5
3.6
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 950
310

Common Calculations

Stiffness to Weight: Axial, points 17
7.8
Stiffness to Weight: Bending, points 56
20
Strength to Weight: Axial, points 32
13 to 27
Strength to Weight: Bending, points 39
14 to 23
Thermal Diffusivity, mm2/s 60
14
Thermal Shock Resistance, points 15
13 to 26

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Copper (Cu), % 0.4 to 0.8
57 to 61
Iron (Fe), % 0 to 1.5
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0 to 0.5
Nickel (Ni), % 0 to 0.5
11 to 13.5
Silicon (Si), % 18 to 20
0
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
24.2 to 32
Residuals, % 0
0 to 0.5