MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. N08366 Stainless Steel

392.0 aluminum belongs to the aluminum alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
210
Elongation at Break, % 0.86
34
Fatigue Strength, MPa 190
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 290
590
Tensile Strength: Yield (Proof), MPa 270
240

Thermal Properties

Latent Heat of Fusion, J/g 670
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 2.5
8.1
Embodied Carbon, kg CO2/kg material 7.5
6.2
Embodied Energy, MJ/kg 140
84
Embodied Water, L/kg 950
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
160
Resilience: Unit (Modulus of Resilience), kJ/m3 490
150
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
24
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 39
19
Thermal Diffusivity, mm2/s 60
3.4
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 0 to 1.5
42.4 to 50.5
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.5
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 18 to 20
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0