MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. S24000 Stainless Steel

392.0 aluminum belongs to the aluminum alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.86
39
Fatigue Strength, MPa 190
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 290
770
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 670
280
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 670
1390
Melting Onset (Solidus), °C 580
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 19
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.5
7.6
Embodied Carbon, kg CO2/kg material 7.5
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 950
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
260
Resilience: Unit (Modulus of Resilience), kJ/m3 490
470
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
25
Strength to Weight: Axial, points 32
28
Strength to Weight: Bending, points 39
24
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 73.9 to 80.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 0 to 1.5
61.5 to 69
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
11.5 to 14.5
Nickel (Ni), % 0 to 0.5
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 18 to 20
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0