MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. 6012 Aluminum

Both 4004 aluminum and 6012 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 2.4
9.1 to 11
Fatigue Strength, MPa 42
55 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 63
130 to 190
Tensile Strength: Ultimate (UTS), MPa 110
220 to 320
Tensile Strength: Yield (Proof), MPa 60
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 910
890
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 25
94 to 480
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
48
Strength to Weight: Axial, points 12
22 to 32
Strength to Weight: Bending, points 20
29 to 37
Thermal Diffusivity, mm2/s 58
62
Thermal Shock Resistance, points 5.1
10 to 14

Alloy Composition

Aluminum (Al), % 86 to 90
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 1.0 to 2.0
0.6 to 1.2
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 9.0 to 10.5
0.6 to 1.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.3
Residuals, % 0
0 to 0.15